
 

 

Front End Nanodegree Syllabus 
Build Stunning User Experiences   

 

Before You Start 
You've taken the first step toward becoming a web developer by choosing the Front End Nanodegree 
program. In order to succeed, we recommend having experience using the web, being able to perform a 
search on Google, and (most importantly) the determination to keep pushing forward! Prior programming 
experience is not required, but if you'd like to prepare for this Nanodegree, check out our ​HTML and CSS 
Syntax​ course. 
 
The Front-End Web Developer Nanodegree is composed of 8 projects. With each project, you'll create 
something to demonstrate your mastery of in-demand skills. Projects range in complexity and each builds 
upon the last. In the end, you will have built a portfolio of projects, including a select set that are resume 
worthy. 

Project 1: Animal Trading Cards 
In this project, you’ll be creating a trading card for your favorite animal. You will use your knowledge of 
HTML to create the structure for your trading card. Then you will use CSS styling to design your trading card. 

Supporting Lesson Content: HTML Syntax 

Lesson Title  Learning Outcomes 

HTML Syntax  ➔ Identify the parts that make up an HTML tag 
➔ Determine when to use specific HTML tags 
➔ Correctly structure nested HTML content 
➔ Decide between a variety of text editors for writing code 

Supporting Lesson Content: CSS Syntax 

Lesson Title  Learning Outcomes 

CSS Syntax  ➔ Identify the benefit of separating style from content 
➔ Use CSS to style a website 
➔ Test styles by manipulating CSS properties  
➔ Use CSS references to lookup standard CSS properties and 

values 

 

https://www.udacity.com/course/html-and-css-syntax--ud001
https://www.udacity.com/course/html-and-css-syntax--ud001


 

How to Write Code Faster  ➔ Use keyboard shortcuts to write code faster 
➔ Use code editor packages and themes to improve workflow and 

write code more efficiently 

   

 



 

Project: 2 Build a Portfolio Site 
For this project, you'll be building a portfolio website. You will be provided a design mockup as a PDF-file, 
and you must replicate that design in HTML and CSS. You will develop a responsive website that will display 
images, descriptions and links to each of the portfolio projects you will complete through the course of your 
Nanodegree program on any size of screen. 

Supporting Lesson Content: Responsive Web Design 

Lesson Title  Learning Outcomes 

Why Responsive  ➔ Create your own responsive web page that works well on any 
device: phone, tablet, desktop or anything in between. 

➔ Explore what makes a site responsive and how some common 
responsive design patterns work across different devices.  

➔ Create your own responsive layout using the `viewport` tag 
and CSS media queries.  

➔ Experiment with major and minor breakpoints 
➔ Optimize text for reading. 

Starting Small  ➔ Build HTML elements for any screen size. 
➔ Use the browser viewport to create consistent user experiences. 

Building Up  ➔ Use media queries and breakpoints to create responsive web 
page designs 

➔ Create flexible HTML elements with an introduction to Flexbox 

 

Supporting Lesson Content: Writing READMEs  

Lesson Title  Learning Outcomes 

Writing READMEs  ➔ Identify Markdown syntax 
➔ Explain the importance of documentation 
➔ Write Markdown to document project instructions and 

information 

 

 

   

 



 

Project 3: Memory Game 
In this project, you’ll demonstrate your mastery of HTML, CSS, and JavaScript by building a complete 
browser-based card matching game (also known as Concentration). From building a grid of cards, adding 
functionality to handle user input, and implementing gameplay logic -- you'll combine all your web 
development skills to create a fully interactive experience for your users. 

Supporting Lesson Content: Intro to JavaScript 

Lesson Title  Learning Outcomes 

What Is JavaScript  ➔ Gain insight on history of JavaScript. 
➔ Begin writing code immediately using the JavaScript console. 

Data Types & Variables  ➔ Represent real-world data using JavaScript variables. 
➔ Recognize distinctions between different data types. 

Conditionals  ➔ Use conditional statements to add logic and control flow into 
JavaScript programs. 

Loops  ➔ Reduce code duplication and automate repetitive tasks by 
leveraging JavaScript loops. 

Functions  ➔ Harness the power of functions to streamline and organize your 
programs. 

Arrays  ➔ Leverage, arrays to store complex data in JavaScript programs. 

Objects  ➔ Alongside arrays, use objects to store complex data. 

 

Supporting Lesson Content: Intro to ES6 

Lesson Title  Learning Outcomes 

ES6 Syntax  ➔ Utilize recent syntax improvements that have been made to the 
JavaScript language. 

 

Supporting Lesson Content: Shell Workshop 

Lesson Title  Learning Outcomes 

Shell Workshop  ➔ The Unix shell is a powerful tool for developers of all sorts. You'll 
get a quick introduction to the very basics of using it on your 
own computer. 

 

 



 

Supporting Lesson Content: Version Control with Git & GitHub 

Lesson Title  Learning Outcomes 

What is Version Control  ➔ You'll learn about the benefits of version control and install the 
version control tool Git! 

Create A Git Repo  ➔ Create a new repository from scratch 
➔ Cloning an existing repository. 

Review A Repo's History  ➔ Review an existing Git repository's history of commits. 
➔ Change how Git Log displays information. 
➔ View files that have been modified. 
➔ View changes that have been made. 

Add Commits To A Repo  ➔ Make commits that are saved to the repository. 
➔ Write descriptive commit messages. 
➔ Verify the changes you're about to save to the repository. 

Tagging, Branching, and 
Merging 

➔ Add special markers called tags to commits. 
➔ Work on isolated development tracks by making use of Git's 

branches. 
➔ Combine branches together. 

Undoing Changes  ➔ Modify or undo changes that have been saved to a repository. 

Working With Remotes  ➔ Create remote repositories on GitHub. 
➔ Get and send changes to a remote repository. 

Working On Another 
Developer's Repository 

➔ Create copies of a project by forking another developer’s 
repository. 

➔ Collaborate with other developers by contributing to a public 
project. 

Staying In Sync With A 
Remote Repository 

➔ Leverage pull requests to send suggested changes to another 
developer. 

➔ Move or combine commits with `git rebase`. 

 

Supporting Lesson Content: JavaScript & the DOM 

Lesson Title  Learning Outcomes 

The Document Object 
Model 

➔ Learn how the DOM is constructed 
➔ Use DOM methods to select page elements 
➔ Figure out where an Element's properties come from 

Creating Content with 
JavaScript 

➔ Use DOM and JavaScript to add new content to the page 
➔ Learn DOM and JavaScript to remove page content 
➔ Use DOM and JavaScript to style page elements 

 



 

Working with Browser 
Events 

➔ Discover the hidden world of browser events 
➔ Use DOM and JavaScript to respond to specific events 
➔ Learn when the web page is ready to be modified and controlled 

Performance  ➔ Learn how to measure the speed of your DOM and JavaScript 
code 

➔ Identify code that causes Reflow and Repaint issues 
➔ Explain how the JavaScript Event Loop works 

 

 

   

 



 

Project 4: Classic Arcade Game Clone 
In this project, you’ll recreate the classic arcade game Frogger. You will be provided visual assets and a game 
loop engine; using these tools you must add a number of entities to the game including the player 
characters and enemies.  

Supporting Lesson Content: Web Accessibility 

Lesson Title  Learning Outcomes 

Accessibility Overview  ➔ Explore the diversity of different users experience with websites 
and applications. Learn about using screen readers practically 
and recognize the challenge of building web experiences for all 
users. 

Focus  ➔ Learn how important focus is to maintain an accessible site. 
Maintain focus using the Tabindex, Keyboard Design Patterns, 
and Offscreen Content. 

Semantics Basics  ➔ Dive into the differences between visual UI and semantically 
designed accessible UI. Add semantic elements to HTML to 
create a user interface that works for everyone. 

Navigating Content  ➔ Implement effective semantic navigation using headings, link 
text and landmarks. 

ARIA  ➔ Sometimes an HTML element may not have a role or value 
assigned semantically. In this lesson, you'll use ARIA attributes to 
provide context for screen readers. 

Style  ➔ Incorporate CSS styling into your accessible web design and use 
accessible color schemes to improve accessibility. 

 

Supporting Lesson Content: Object-Oriented JavaScript 

Lesson Title  Learning Outcomes 

Objects in Depth  ➔ Access an object's properties 
➔ Create objects using ​object literal notation 
➔ Add properties to objects 
➔ Remove properties from objects using the ​delete​ operator 
➔ Write methods to access an object with the ​this​ keyword 
➔ Compare an object with another object 
➔ Identify global variables as properties of the ​window​ object 
➔ Identify the risks of using global variables 
➔ Extract properties and values from an object 

Functions at Runtime  ➔ Analyze why JavaScript functions are ​first-class​ functions 

 



 

➔ Callback​: pass a function as an argument into another function 
➔ Runtime scope​: identify variables available for a function to use 
➔ Analyze how the JavaScript interpreter accesses variables 

through the ​scope chain 
➔ Utilize a ​closure​ to pass arguments implicitly, and to store a 

snapshot of state at function declaration 
➔ Write an ​immediately-invoked function expression​ (IIFE) to create 

private state 

Classes and Objects  ➔ Model real-world "things" using object-oriented programming 
➔ Write a ​constructor function​ to instantiate objects 
➔ Identify various ways a function can be invoked, including each 

approach's effect on the value of ​this  
➔ Leverage ​call​, ​apply​, and​ bind​ to manually set the value of ​this 
➔ Access and add properties to an object's ​prototype 
➔ Implement ​prototypal inheritance​ to base an object on another 

object 

 

Supporting Lesson Content: ES6 

Lesson Title  Learning Outcomes 

ES6 Functions  ➔ With ES6, functions are getting some much-needed 
improvements. Learn a number of new things including arrow 
functions and classes. 

ES6 Built-ins  ➔ The JavaScript environment provides you with a number of 
features by default. You'll learn about Sets, Maps, Proxies, 
Generators, how iteration works, and more! 

ES6 Professional 
Developer-fu 

➔ With this massive improvement, not all browsers are able to 
support this new version of JavaScript. You'll learn about using 
polyfills and transpiling your ES6 JavaScript code to ES5. 

   

 



 

Project 5: Feed Reader Testing 
In this project, you’ll be learning about testing with Javascript. Testing is an important part of the 
development process and many organizations practice a standard known as "test-driven development" or 
TDD. This is when developers write tests first, before they ever start developing their application. Whether 
you work in an organization that writes tests extensively to inform product development or one that uses 
tests to encourage iteration, testing has become an essential skill in modern web development! 

Supporting Lesson Content: Web Tooling & Automation 

Lesson Title  Learning Outcomes 

Introduction  ➔ Learn the foundations of what web tooling is and how to 
prevent over-optimization. 

Productive Editing  ➔ Get your text editor setup, learn all of its powerful features and 
keyboard shortcuts. 

Powerful Builds  ➔ Start exploring the Gulp build system and automate many of the 
processes you perform multiple times throughout the course of 
your work. 

Expressive Live Editing  ➔ Setup LiveReload to automatically reload your browser every 
time you make a change in your code. 

How to Prevent Disasters  ➔ Learn how to prevent cross-browser issues in your CSS, prevent 
JavaScript errors, and more - all with your tool pipeline! 

Awesome Optimizations  ➔ Learn how to concatenate, minimize, transpile, and more! 

 

Supporting Lesson Content: JavaScript Testing 

Lesson Title  Learning Outcomes 

Rethinking Testing  ➔ Explain the benefits of Test-Driven Development 
➔ Use tests to identify expectations of code functionality 

Writing Test Suites  ➔ Use the Jasmine testing framework 
➔ Identify the key functions that make up the Jasmine framework 
➔ Explain the Red-Green-Refactor life cycle of testing 
➔ Write Jasmine tests to validate asynchronous code  

 
 
   

 



 

Project 6: Restaurant Reviews 
For this project, you will convert a static webpage to a mobile-ready web application. You will take a static 
design that lacks accessibility and convert the design to be responsive on different sized displays and 
accessible for screen reader use. You will also begin converting this to a Progressive Web Application by 
caching some assets for offline use. 

Supporting Lesson Content: Javascript Design Patterns 

Lesson Title  Learning Outcomes 

Changing Expectations  ➔ React to changing product specifications and developer 
expectations 

➔ Explore the Model-View-Controller design pattern 
➔ Analyze an existing application for MVC structure 

Refactoring With 
Separation Of Concerns 

➔ Write code with discrete areas of responsibility in an MVC 
application 

➔ Refactor an existing application to make use of modern code 
design practices 

 

Supporting Lesson Content: JavaScript Promises 

Lesson Title  Learning Outcomes 

Creating Promises  ➔ Learn what a promise is, how it makes writing asynchronous 
JavaScript simpler and how to handle errors. 

Chaining Promises  ➔ Create sequences of asynchronous work by chaining Promises 
together and dive into more advanced error handling. 

 

Supporting Lesson Content: Asynchronous JavaScript 

Lesson Title  Learning Outcomes 

Ajax with XHR  ➔ Connect to external web APIs to power asynchronous browser 
updates 

Ajax with jQuery  ➔ Use the jQuery Javascript library to build Ajax requests and 
handle API responses 

➔ Handle error responses with Ajax 

Ajax with Fetch  ➔ Use the new Fetch API to make asynchronous requests and 
handle the returned data 

 

 



 

Supporting Lesson Content: Front-end Frameworks 

Lesson Title  Learning Outcomes 

Features of Single Page 
Apps 

➔ Learn about the features of a single page web application. 

Examine a Framework's 
Source 

➔ Dig around in the Backbone framework to discover how many of 
its most popular features work. 

Angular  ➔ Learn how to build a single page application in the Angular 
framework. 

Ember  ➔ Learn how to build a single page application in the Ember 
framework. 

 

Supporting Lesson Content: Offline Web Apps 

Lesson Title  Learning Outcomes 

The Benefits of Offline 
First 

➔ Discover the differences between a standard web app and an 
offline-first application and get an introduction to new APIs. 

Introducing the Service 
Worker 

➔ Recognize the differences between good, poor, intermittent, and 
missing connectivity for your users, and master how to make 
applications that navigate these conditions with ease. 

IndexedDB and Caching  ➔ Use the IndexedDB API, along with Service Workers, to write 
caching solutions that will make your applications more 
performant. 

 
 
 
   

 



 

Project 7: MyReads 
In this project, you will create a React application from scratch and utilize React components to manage the 
user interface. You’ll create a virtual bookcase to store your books and track what you're reading. Using the 
provided Books API, you’ll search for books and add them to a bookshelf as a React component. Finally, 
you’ll use React's ​setState​ method to build the functionality to move books from one shelf to another. 

Supporting Lesson Content: React Fundamentals 
 

Lesson Title  Learning Outcomes 

Why React  ➔ Identify why React was built 
➔ Use ​composition​ to build complex functions from simple ones 
➔ Leverage ​declarative code​ to express logic without control flow 
➔ Recognize that React is just JavaScript 

Rendering UI with React  ➔ Use ​create-react-app​ to create a new React application 
➔ Create reusable, focused ​Class components​ with composition 
➔ Leverage​ JSX​ to describe UI 

State Management  ➔ Manage state in applications 
➔ Use ​props​ to pass data into a component 
➔ Create ​functional components​ focused on UI rather than behavior 
➔ Add ​state​ to components to represent mutable internal data 
➔ Use the​ this​ keyword to access component data and properties 
➔ Update state with ​setState() 
➔ Use ​PropTypes ​to typecheck and debug components 
➔ Use ​controlled components​ to manage input form elements 

Render UI with External 
Data 

➔ Conceptualize the ​lifecycle​ of a component  
➔ Use React's ​componentDidMount​ lifecycle hook for HTTP requests 

Manage App Location 
with React Router 

➔ Use React Router to add different routes to applications 
➔ Use state to dynamically render a different "page" 
➔ Use React Router's ​Route​ component 
➔ Use React Router's ​Link​ component 

 

 

   

 



 

Project 8: Neighborhood Map (React) 
In this project, you will develop a single-page application featuring a map of your neighborhood or a 
neighborhood you would like to visit. You will then add additional functionality to this application, including: 
map markers to identify popular locations or places you’d like to visit, a search function to easily discover 
these locations, and a listview to support simple browsing of all locations. You will then research and 
implement third-party APIs that provide additional information about each of these locations (such as 
StreetView images, Wikipedia articles, Yelp reviews, etc). 

Supporting Lesson Content: Google Maps API 

Lesson Title  Learning Outcomes 

Getting Started with the 
APIs 

➔ Set up your developer credentials and get started with the 
Google Maps APIs. 

Understanding API 
Services 

➔ Explore the location services available in the Google Maps APIs, 
including the Geocoding, Elevation, and Directions APIs. 

Using the APIs in Practice  ➔ Learn the practical details you need to know to use the Google 
Maps APIs in the real world. 

 
 
 

 


